ENSEMBLES, RELATIONS, APPLICATIONS

OBJECTIFS DU CHAPITRE

- Notions de base sur les ensembles.
- Maitriser le vocabulaire sur les applications.
- Utiliser les relations binaires.

Table des matières

1	Ensembles			
	1	Ensemble, élément		
	2	Opérations sur les ensembles		
	3	Un peu de logique		
II	Appli	cations		
	1	Définitions		
	2	Composition d'applications		
	3	Applications injectives, surjectives, bijectives		
	4	Application réciproque		
	5	Images directe et réciproque		
	6	Application aux sommes		
III	Relation binaires			
	1	Relation d'ordre		
	2	Polation d'áquivalence		

I ENSEMBLES

Cette partie reprend intégralement le "chapitre" 1.5 sur les ensembles vu précédemment, excepté la notion d'ensembles disjoints et de partition qui sera revue plus loin.

1 Ensemble, élément

La notion d'ensemble est une notion première dans le formalisme moderne des mathématiques. On ne cherchera donc pas à en donner une définition précise, et on s'en tiendra à une notion « intuitive ».

DÉFINITION 1

Un **ensemble** est une collection d'objets (réels, entiers, fonctions, ...), appelés **élements**. $x \in E$ se lit « x appartient à E » : cela signifie que x est un élément de l'ensemble E. $x \notin E$ se lit « x n'appartient pas à E » : cela signifie que x n'est pas un élément de l'ensemble E.

EXEMPLES 1. On connaît les ensembles usuels \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \mathbb{R} . On peut en construire d'autres de plusieurs façons :

- en explicitant tous ses éléments (en extension) : $A = \{0,1\}$; $B = \{1,2,...,500\}$, noté aussi [1,500].
- en précisant une propriété caractéristique de ses éléments (en compréhension) : Pour deux réels a et b, $\{x \in \mathbb{R} \mid a \le x \le b\}$ est l'ensemble des réels x tels que $a \le x \le b$, et est noté [a,b].
- comme l'ensemble des valeurs prises par une expression dépendant d'un paramètre :
 C = {2n | n ∈ N} est l'ensemble des valeurs prises par 2n lorsque n parcourt N, c'est-à-dire l'ensemble des entiers naturels pairs. On le note parfois 2N.

EXEMPLES 2. Voici d'autres exemples ou notations classiques :

- $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$ et son pendant négatif \mathbb{R}_- .
- $\mathbb{R}^* = \{x \in \mathbb{R} \mid x \neq 0\}$ et de même pour \mathbb{N}^* , \mathbb{Z}^* , \mathbb{Q}^* .
- $\mathbb{Q} = \left\{ \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{N}^* \right\}$ et l'ensemble des nombres dits décimaux $\mathbb{D} = \left\{ \frac{a}{10^n} \middle| a \in \mathbb{Z}, n \in \mathbb{N} \right\}$.
- Il existe un (unique) ensemble ne contenant aucun élément : c'est **l'ensemble vide**, noté Ø.

Il est important de bien mettre des $\{accolades\}$. Par ailleurs, contrairement aux listes Python, un ensemble ne tient pas compte des répétitions ni de l'ordre de ses éléments : ainsi $\{1,2,1\} = \{1,2\} = \{2,1\}$.

(DÉFINITION 2)

Soient E et F deux ensembles.

- *E* est dit un **singleton** s'il ne contient qu'un seul élément.
- Un ensemble est dit **fini** s'il possède un nombre fini d'éléments. Sinon, il est dit **infini**.
- E et F sont dits égaux, et on note E = F, si E et F ont les mêmes éléments.
- E est **inclus** dans F, et on note $E \subset F$, si $\forall x \in E$ $x \in F$. On dit également que E est un **sousensemble** ou une **partie** de F.

EXEMPLE 3. Pour tout ensemble E, on a $E \subset E$ et $\emptyset \subset E$ (ceci sera justifié en partie 3).

Pour tout $x \in E$, le singleton $\{x\}$ est aussi une partie de E.

REMARQUE. **Attention!** On prendra garde à ne pas confondre <u>l'élément</u> x de E et la <u>partie</u> $\{x\}$ de E. Le premier appartient à $E: x \in E$, le second est inclus dans $E: \{x\} \subset E$.

Proposition 3

Soient *A*, *B* et *C* trois ensembles.

$$A = B \iff A \subset B \text{ et } B \subset A$$

$$(A \subset B \text{ et } B \subset C) \Longrightarrow A \subset C$$

DÉFINITION 4

On note $\mathcal{P}(E)$ l'ensemble des parties de E. Autrement dit $A \in \mathcal{P}(E) \iff A \subset E$.

EXEMPLE 4. Si $E = \{1, 2\}$ on a $\mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$. Attention $\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$!

DÉFINITION 5

- Étant donnés x et y deux objets mathématiques quelconques (par exemple x est un réel et y une suite...), on définit un nouvel objet mathématique, le **couple** (x, y). Deux couples (x, y) et (x', y') sont égaux si x = x' et y = y'.
- On définit de même les **triplets** (x, y, z), **quadruplets** (x, y, z, t), et, pour tout $n \in \mathbb{N}^*$, des *n*-uplets $(x_1, x_2, ..., x_n)$. Deux *n*-uplets $(x_1, ..., x_n)$ et $(y_1, ..., y_n)$ sont égaux si $\forall i \in [1, n]$ $x_i = y_i$.
- A et B étant deux ensembles, on note $A \times B$ l'ensemble des couples (a, b), où $a \in A$ et $b \in B$. Cet ensemble est appelé **produit cartésien de** A **et** B.
- Plus généralement, étant donnés $n \in \mathbb{N}^*$ et A_1 , A_2 , ..., A_n des ensembles, le produit cartésien $A_1 \times A_2 \times \cdots \times A_n$ est l'ensemble des n-uplets $(a_1,...,a_n)$, où, pour tout $i \in [1,n]$, $a_i \in A_i$.

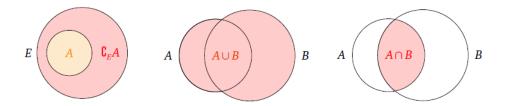
REMARQUE. Attention, les n-uplets tiennent compte de l'ordre : $(1,2) \neq (2,1)$. On note généralement $A^2 := A \times A$, d'où les $(x,y) \in \mathbb{R}^2$ déjà rencontrés. Ne pas confondre $\{(1,2)\}$, qui est un singleton, et l'ensemble $\{1,2\}$ qui contient deux éléments.

2 OPÉRATIONS SUR LES ENSEMBLES

DÉFINITION 6

Soient A, B, E trois ensembles avec $A, B \subset E$.

- **Intersection** \cap : $A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}.$
- **(Ré)union** \cup : $A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$. Pour rappel le « ou » est inclusif (cf dessin).
- **Différence** : $A \setminus B = \{x \in A \mid x \notin B\}$.
- Complémentaire : $E \setminus A = \mathcal{C}_E A = \{x \in E \mid x \notin A\}$. Si aucune ambiguité, on note parfois $\mathcal{C}A$, A^c ou \overline{A} .



EXEMPLES 5.

- $\mathbb{R} \setminus \mathbb{Q}$ est l'ensemble des irrationnels.
- $\mathbb{R}_+^* = \mathbb{R}_+ \setminus \{0\} = \mathbb{R} \setminus \mathbb{R}_- = x \in \mathbb{R} \mid x > 0$ et idem pour \mathbb{R}_-^* .

Proposition 7

Soient A, B, C des parties d'un ensemble E.

- $A \cap B = B \cap A$
- $A \cap (B \cap C) = (A \cap B) \cap C$ (on peut donc écrire $A \cap B \cap C$ sans ambigüité)
- $A \cap \emptyset = \emptyset$, $A \cap A = A$, $A \subset B \iff A \cap B = A$
- $A \cup B = B \cup A$
- $A \cup (B \cup C) = (A \cup B) \cup C$ (on peut donc écrire $A \cup B \cup C$ sans ambiguïté)
- $A \cup \emptyset = A$, $A \cup A = A$, $A \subset B \iff A \cup B = B$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\overline{\left(\overline{A}\right)} = A$ et $A \subset B \iff \overline{B} \subset \overline{A}$
- $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$
- $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$
- $\overline{\varnothing} = E$ et $\overline{E} = \varnothing$
- $A \setminus B = A \cap \overline{B}$
- $A \setminus \emptyset = A$, $A \setminus E = \emptyset$

Démonstration. Soit $x \in E$. On reformule les énoncés grâce à la correspondance logique-ensemble ci-dessous :

Ensemble	$(x \in E)$	Logique
$x \in A \cup B$	équivaut à	$x \in A \text{ ou } x \in B$
$x \in A \cap B$		$x \in A \text{ et } x \in B$
$x \in \overline{A}$		$non(x \in A)$
$A \subset B$		$x \in A \implies x \in B$
A = B		$x \in A \iff x \in B$

3 UN PEU DE LOGIQUE

Soit P(x) une proposition dépendant d'un élément x d'un ensemble quelconque. Par convention :

- $\ll \forall x \in \emptyset$ $P(x) \gg \text{ est toujours } vrai.$
- $\ll \exists x \in \emptyset$ $P(x) \gg \text{ est toujours } faux.$

C'est cette convention qui fait que $\varnothing \subset E$ pour tout ensemble E. Elle entraine aussi le fait que « Faux \implies ... » est vrai : pour deux propositions P et Q dépendant d'une variable x dans E :

$$(\forall x \in E \mid P(x) \Longrightarrow Q(x)) \iff \{x \in E \mid P(x)\} \subset \{x \in E \mid Q(x)\}$$

Ainsi, si P(x) est fausse pour tout x de E, l'inclusion de droite se réécrit « $\varnothing \subset ...$ », ce qui est toujours vrai.

II APPLICATIONS

1 Définitions

DÉFINITION 8

Soient E, F deux ensembles. Une application de E dans F est la donnée d'une partie $\Gamma \subset E \times F$ vérifiant

$$\forall x \in E \quad \exists ! \, y \in F \quad (x, y) \in \Gamma$$

Si on désigne l'application par f, alors on note y = f(x) l'unique élément de F tel que $(x, y) \in \Gamma$.

- E est appelé ensemble de départ de l'application f.
- F est appelé ensemble d'arrivée de l'application f.
- $\Gamma = \{(x, f(x)) \in E \times F \mid x \in E\}$ est appelé graphe de l'application f.
- y = f(x) est l'image de x par l'application f.
- x est **un** antécédent de y = f(x) par l'application f (un même y peut avoir plusieurs antécédents).

(NOTATION)

- On écrit $f: E \to F$ pour indiquer que f est une application dont l'ensemble de départ est E et l'ensemble d'arrivée est F (sans préciser ce que vaut f(x) pour $x \in E$).
- On écrit $f: x \mapsto y$ pour indiquer que l'application f transforme x en y (E et F doivent avoir été précisés avant, par exemple avec $f: E \to F$, ou bien ils sont évidents et sous-entendus).
- On peut combiner les écritures :

$$f: E \to F \qquad f: x \in E \mapsto y$$
$$x \mapsto y$$

On note $\mathscr{F}(E,F)$ ou F^E l'ensemble des applications de E dans F. Deux applications $f,g \in F^E$ sont égales, et on note f=g, si pour tout $x \in E$, f(x)=g(x).

L'écriture f(x) n'a un sens que si on sait dans quel ensemble se trouve x. Il faut donc avoir précisé l'ensemble de départ E avant d'écrire f(x). Quand on écrit f(x), on comprend que le x est un élément quelconque de E. EXEMPLES 6.

- 1) L'application $x \in \mathbb{R} \mapsto x^2$ est la fonction carré (quand on part de \mathbb{R} , on écrit parfois juste $x \mapsto x^2$).
- 2) Soit *E* un ensemble. On appelle application identité de *E*, et on note id_{*E*}, l'application

$$id_E: E \longrightarrow E$$

$$x \mapsto x$$

3) Soient E un ensemble et $A \subseteq E$. La <u>fonction indicatrice de A</u>, notée \mathbb{I}_A est définie par :

$$\mathbb{1}_A : E \longrightarrow \{0, 1\}$$

$$x \mapsto \begin{cases}
1 & \text{si } x \in A \\
0 & \text{si } x \notin A
\end{cases}$$

- 4) $u \in \mathbb{R}^{\mathbb{N}}$ signifie que l'application u associe à chaque entier naturel n un réel u(n). En général on note $u_n := u(n)$ et on dit que $(u_n)_{n \in \mathbb{N}}$ est une suite (réelle).
- 5) Plus généralement, pour deux ensembles E et I, si $a \in E^I$, on dit que les $a_i := a(i)$ forment une famille d'éléments de E indexée par I, ce qu'on note $(a_i)_{i \in I}$.

REMARQUE. Pour qu'une application $f: E \to F$ soit bien définie, il faut que, pour *chaque* élément $x \in E$:

- f(x) ait un sens.
- f(x) appartienne à F.
- f(x) soit défini de manière unique.

Ainsi, on peut écrire $f_1: \mathbb{R}_+ \to \mathbb{R}$ aussi bien que $f_2: \mathbb{R}_+ \to \mathbb{R}_+$ ou encore $f_3: [1, +\infty[\to \mathbb{R}_+ \times \sqrt{x}]]$ aussi bien que $f_2: \mathbb{R}_+ \to \mathbb{R}_+$ ou encore $f_3: [1, +\infty[\to \mathbb{R}_+ \times \sqrt{x}]]$

Mais ces fonctions sont MAL définies : $f_4:\mathbb{R} \to \mathbb{R}_+$ ou bien $f_5:\mathbb{R}_+ \to \mathbb{R}_+^*$ et même $f_6:\mathbb{R} \to \mathbb{C}$ $x \mapsto \sqrt{x}$ $x \mapsto \sqrt{x}$

Pour f_6 , le problème vient du fait que, par exemple, $\sqrt{-1}$ n'est pas défini de manière unique : ce peut être i ou -i.

DÉFINITION 9 (Restriction et prolongement)

Soient E, F deux ensembles, $f: E \to F$ une application et $A \subset E$ une partie de E.

- On appelle <u>restriction de f à A</u>, notée $f|_A$, la fonction $f|_A:A\to F$. $x\mapsto f(x)$
- On dit qu'une application g est un prolongement de f si f est une restriction de g.

EXEMPLES 7.

- 1) L'application f_3 dans la remarque ci-dessus est la restriction à $[1, +\infty[$ de l'application f_2 (mais pas de f_1 car l'ensemble d'arrivée diffère).
- 2) L'application h définie sur \mathbb{R} par $h(x) = \frac{1}{x}$ si $x \neq 0$ et h(0) = 0 est un prolongement de la fonction inverse (qui, elle, est définie sur \mathbb{R}^*).

2 COMPOSITION D'APPLICATIONS

DÉFINITION 10 (Composition)

Soient E, F, G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications. On appelle composée de g et f, notée $g \circ f$ l'application

$$g \circ f : E \rightarrow G$$

 $x \mapsto g(f(x))$

REMARQUES.

L'application $f: E \to F$ étant donnée, pour que $g \circ f$ ait un sens, il suffit que g soit définie sur $\{f(x) \in F \mid x \in E\}$, et non sur F tout entier. On appellera plus tard cet ensemble f(E), cf définition 20.

En général :
$$g \circ f \neq f \circ g$$
 : si $\begin{cases} f: x \mapsto x+1 \\ g: x \mapsto x^2 \end{cases}$ alors pour tout $x \in \mathbb{R}$, $\begin{cases} (g \circ f)(x) = (x+1)^2 \\ (f \circ g)(x) = x^2+1 \end{cases}$

PROPOSITION 11 (Associativité de la composition)

Soient E, F, G, H quatre ensembles, $f: E \to F$, $g: F \to G$ et $h: G \to H$ trois applications. Alors $(h \circ g) \circ f = h \circ (g \circ f)$.

Démonstration. Cela découle de la défintion de o.

REMARQUE. Comme pour +, \times , \cup , \cap , "et", "ou", cette propriété permet d'écrire $h \circ g \circ f$ sans ambiguïté.

EXEMPLE 8. Soit $f \in F^E$. Alors $f \circ id_E = f$ et $id_F \circ f = f$.

3 Applications injectives, surjectives, bijectives

DÉFINITION 12 (**jection)

Soient E, F deux ensembles et $f: E \to F$ une application.

• On dit que f est une <u>injection</u> (ou qu'elle est <u>injective</u>) lorsque tout élément y de F admet **au plus** un antécédent, ce qui s'écrit :

$$\forall x, x' \in E \quad f(x) = f(x') \implies x = x'$$

• On dit que f est une <u>surjection</u> (ou qu'elle est <u>surjective</u>) lorsque tout élément y de F admet **au moins** un antécédent, ce qui s'écrit :

$$\forall y \in F \quad \exists x \in E \quad y = f(x)$$

• On dit que f est une <u>bijection</u> (ou qu'elle est <u>bijective</u>) lorsqu'elle est à la fois injective et surjective, c'est-à-dire que tout élément de F admet **exactement** un antécédent, ce qui s'écrit :

$$\forall y \in F \quad \exists! x \in E \quad y = f(x)$$

PROPOSITION 13 (Reformulation en termes d'ensemble des solutions d'une équation)

Soient E, F deux ensembles et $f: E \to F$ une application.

- f est injective si et seulement si, pour tout $y \in F$, l'équation f(x) = y, d'inconnue $x \in E$, admet **au plus** une solution.
- f est surjective si et seulement si, pour tout $y \in F$, l'équation f(x) = y, d'inconnue $x \in E$, admet au moins une solution.
- f est bijective si et seulement si, pour tout $y \in F$, l'équation f(x) = y, d'inconnue $x \in E$, admet **exactement** une solution.

EXEMPLES 9.

- 1) Soit $f: \mathbb{R} \to \mathbb{R}$. On a $\begin{cases} f(1) = f(-1) \text{ et } -1 \neq 1 \text{ donc } f \text{ n'est pas injective} \\ f(x) = -1 \text{ n'a pas de solution dans } \mathbb{R} \text{ donc } f \text{ n'est pas surjective} \end{cases}$
- 2) L'application $f: \mathbb{R} \to \mathbb{R}$ est une bijection. $x \mapsto x^3$
- 3) Pour tout ensemble E, l'identité id_E est bijective.

REMARQUE. Injectivité, surjectivité et bijectivité d'une fonction dépendent des ensembles de départ et d'arrivée :

$$f: \mathbb{R} \to \mathbb{R}$$
 n'est ni injective, ni surjective $x \mapsto x^2$

$$g: \mathbb{R}_+ \to \mathbb{R}$$
 est injective, pas surjective $x \mapsto x^2$

$$h: \mathbb{R} \to \mathbb{R}_+$$
 n'est pas injective, est surjective $x \mapsto x^2$

$$i: \mathbb{R}_+ \to \mathbb{R}_+$$
 est injective et surjective $x \mapsto x^2$

En termes de rédaction il est important de lever les éventuels doutes en précisant « f est une injection / surjection / bijection de A sur B ».

PROPOSITION 14 (**jection et composition)

Soient E, F, G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications.

- \triangleright Si f et g sont injectives, alors $g \circ f$ est injective.
- \triangleright Si f et g sont surjectives, alors $g \circ f$ est surjective.
- \triangleright Si f et g sont bijectives, alors $g \circ f$ est bijective.

Démonstration. Supposons que f et g soient injectives. Soient $x, x' \in E$ tels que $(g \circ f)(x) = (g \circ f)(x')$. Alors

$$g(f(x)) = g(f(x')) \implies f(x) = f(x')$$
 par injectivité de g par injectivité de f

Ainsi, $g \circ f$ est injective.

Supposons que f et g soient surjectives. Soit $g \in G$. Par surjectivité de g, il existe $g \in F$ tel que g(z) = y. Par surjectivité de g, il existe $g \in F$ tel que g(z) = y. Par surjectivité de g, il existe $g \in F$ tel que g(z) = y. Ainsi,

$$(g \circ f)(x) = g(z) = y$$

On a prouvé que tout $y \in G$ admet un antécédent $x \in E$ par $g \circ f$. Ainsi, $g \circ f$ est surjective.

Supposons que f et g soient bijectives (donc injectives et surjectives). Alors par ce qui précède $g \circ f$ est injective et surjective. Elle est donc bijective.

PROPOSITION 15 (Réciproque partielle du résultat précédent)

Soient E, F et G trois ensembles, et $f: E \to F$ et $g: F \to G$ deux applications.

- \triangleright Si $g \circ f$ est injective, alors f est injective.
- \triangleright Si $g \circ f$ est surjective, alors g est surjective.

Démonstration. Supposons $g \circ f$ injective. Soient $x, x' \in E$ tels que f(x) = f(x'). Alors en appliquant g on trouve $(g \circ f)(x) = (g \circ f)(x')$. Comme $g \circ f$ est injective, on en déduit que x = x'. Ainsi f est injective. La démonstration du deuxième résultat est facile. □

4 APPLICATION RÉCIPROQUE

PROPOSITION 16 (Application réciproque)

Soit $f \in \mathcal{F}(E, F)$.

f est une bijection de E sur F si et seulement si il existe une application $g:F\to E$ telle que

$$g \circ f = \mathrm{id}_E$$
 et $f \circ g = \mathrm{id}_F$

Cette application g est unique : elle est appelée application réciproque de f et est notée f^{-1} .

Démonstration. Montrons l'implication directe. Supposons que f soit une bijection. On définit $g: F \to E$ de la façon suivante : pour tout $y \in F$, g(y) = x, où $x \in E$ est l'unique solution de f(x) = y. Cela définit bien une application car tout $y \in F$ admet bien une unique image g(y). Soit $x \in E$ et notons y = f(x). Alors

$$(g \circ f)(x) = g(y) = x$$

donc par arbitraire sur $x \in E$, on en déduit $g \circ f = \mathrm{id}_E$. On déduit de même que $f \circ g = \mathrm{id}_F$.

Montrons l'implication réciproque. Comme $g \circ f = \mathrm{id}_E$, $g \circ f$ est une bijection. Par la proposition 15, f est une injection. De plus $f \circ g = \mathrm{id}_F$, donc $f \circ g$ est une bijection. À nouveau par la proposition 15, on en déduit que f est une surjection. Ainsi f est bijective.

Enfin, montrons que g est unique. Supposons que $g_1, g_2 \in \mathcal{F}(F, E)$ vérifient

$$g_1 \circ f = g_2 \circ f = \mathrm{id}_E$$
 et $f \circ g_1 = f \circ g_2 = \mathrm{id}_F$

Alors

$$g_1 = g_1 \circ id_F = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = id_E \circ g_2 = g_2$$

Finalement, $g_1 = g_2$: on a bien unicité de la fonction g.

Proposition 17

Soit $f: E \to F$ une bijection. Alors pour tout $(x, y) \in E \times F$,

$$f(x) = y \iff x = f^{-1}(y)$$

Démonstration. En appliquant f^{-1} (implication directe) ou f (implication réciproque).

REMARQUE. Dans le cas où $f: E \to E$ vérifie $f \circ f = \mathrm{id}_E$, càd que $f^{-1} = f$, on dit que f est une involution sur E. Exemples 10.

- $\exp: \mathbb{R} \to \mathbb{R}_+^*$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$ sont deux bijections réciproques l'une de l'autre.
- L'application id_E est une involution sur E.
- Les applications $z \mapsto -z$ et $z \mapsto \overline{z}$ sont des involutions sur \mathbb{C} .
- Les transformations du plan complexe (chapitre 3) sont des bijections.
- Montrer que $f: \mathbb{R}_+ \to \mathbb{R}_+$ est une bijection et déterminer sa réciproque. $x \mapsto x^2$

Proposition 18)

Soient E, F, G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications bijectives. Alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Démonstration. On vérifie directement, par associativité,

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$
$$= f^{-1} \circ \mathrm{id}_F \circ f$$
$$= f^{-1} \circ f$$
$$= \mathrm{id}_E$$

et de même $(g \circ f) \circ (f^{-1} \circ g^{-1}) = \mathrm{id}_G$. Donc par la proposition 16, $f \circ g$ est bijective et sa réciproque est $f^{-1} \circ g^{-1}$. \square

Proposition 19

Soit $f: E \to F$ une application bijective. Alors $f^{-1}: F \to E$ est aussi une application bijective et $(f^{-1})^{-1} = f$.

Démonstration. Comme f est une bijection, on a (Proposition 16)

$$f \circ f^{-1} = \mathrm{id}_F$$
 $f^{-1} \circ f = \mathrm{id}_E$

On en déduit (Proposition 16) que f^{-1} est bijective et que $f = (f^{-1})^{-1}$.

5 IMAGES DIRECTE ET RÉCIPROQUE

DÉFINITION 20 (Images directe et image réciproque)

Soient $f: E \to F$ une application, $A \subset E$ et $B \subset F$.

• L'image directe de A par f est l'ensemble des images des éléments de A, notée

$$f(A) := \{ f(x) \in F \mid x \in A \} \subset F$$

• L'image réciproque de B par f est l'ensemble des antécédents des éléments de B, noté

$$f^{-1}(B) := \left\{ x \in E \mid f(x) \in B \right\} \quad \subset E$$

EXEMPLES 11. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 3x + 1.

- Si $A = \{0,4,5\}$ l'image directe de A est $f(A) = \{1,13,16\}$.
- Si A = [2,7[, l'image de directe de A est f(A) = [7,22[.
- Si B = [10, 16], l'image de réciproque de B est $f^{-1}(B) = [3, 5]$.

Si f désigne la fonction carré, f([1,2]) = [1,4] et $f^{-1}([1,4]) = [-2,-1] \cup [1,2]$.

$$\cos^{-1}(\left\{0\right\}) = \left\{\frac{\pi}{2} + k\pi; \, k \in \mathbb{Z}\right\}.$$

REMARQUE. **Attention!** L'écriture $f^{-1}(B)$ ci-dessus est une notation, et ne suppose pas l'existence de l'application réciproque f^{-1} .

L'ensemble $f^{-1}(B)$ a un sens même si f n'est pas une bijection. En revanche, si f est une bijection alors l'image réciproque $f^{-1}(B)$ coïncide avec l'image directe de B par f^{-1} .

PROPOSITION 21 (Caractérisation de f(A), $f^{-1}(B)$)

Avec les mêmes hypothèses que la définition ci-dessus, pour tous $x \in E$ et $y \in F$,

$$y \in f(A) \iff \exists x' \in A \quad y = f(x')$$

$$x \in f^{-1}(B) \iff f(x) \in B$$

Démonstration. C'est une réécriture de la définition.

PROPOSITION 22 (Caractérisation de **jection)

Soit $f \in F^E$ une application. Alors

- f est surjective si et seulement si f(E) = F.
- f est injective si et seulement si pour tout $y \in F$, $f^{-1}(\{y\})$ admet **au plus** un élément.
- f est bijective si et seulement si pour tout $y \in F$, $f^{-1}(\{y\})$ est un singleton.

PROPOSITION 23 (*Propriétés des images directes et réciproques*)

Soit $f: E \to F$ une application.

- 1) Soient $A, B \in \mathcal{P}(E)$:
 - a) $A \subset B \implies f(A) \subset f(B)$
 - b) $f(A \cup B) = f(A) \cup f(B)$
 - c) $f(A \cap B) \subset f(A) \cap f(B)$ (attention c'est bien $\subset !$)
- 2) Soient $A, B \in \mathcal{P}(F)$:

a)
$$A \subset B \implies f^{-1}(A) \subset f^{-1}(B)$$

b)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

c)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

d)
$$f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$$

Démonstration. Prouvons 1) b). Soient $A, B \subset E$ et $y \in F$.

$$y \in f(A \cup B) \iff \exists x \in A \cup B \quad y = f(x)$$
 $\iff \exists x \in A \quad y = f(x) \quad \text{ou} \quad \exists x' \in B \quad y = f(x')$
 $\iff y \in f(A) \quad \text{ou} \quad y \in f(B)$
 $\iff y \in f(A) \cup f(B)$

Donc par arbitraire sur y, on a $f(A \cup B) = f(A) \cup f(B)$.

Maintenant, montrons 1) c). Soient $A, B \subset E$ et $y \in F$.

$$y \in f(A \cap B) \implies \exists x \in A \cap B \quad y = f(x)$$

$$\implies \exists x \in A \quad y = f(x) \quad \text{et} \quad \exists x' \in B \quad y = f(x') \quad (*)$$

$$\implies y \in f(A) \quad \text{et} \quad y \in f(B)$$

$$\implies y \in f(A) \cap f(B)$$

D'où par arbitraire sur y, on a $f(A \cap B) \subset f(A) \cap f(B)$.

Note: la ligne (*) n'est pas équivalente à la ligne qui lui précède. En effet si on suppose (*) on a a priori $x \neq x'$ et donc on ne peut pas en déduire que y est l'image d'un élément de $A \cap B$. C'est pour ça qu'on n'a qu'une inclusion et qu'en général $f(A) \cap f(B) \neq f(A \cap B)$. Contre-exemple:

$$A = \{0\}$$
 $B = \{1\}$ $f: x \in \{0, 1\} \mapsto 0$

alors
$$f(A) = f(B) = \{0\}$$
 et $f(A \cap B) = f(\emptyset) = \emptyset$.

Prouvons 2) b). Soient $A, B \subset F$ et $x \in E$.

$$x \in f^{-1}(A \cup B) \iff f(x) \in A \cup B$$

 $\iff f(x) \in A \text{ ou } f(x) \in B$
 $\iff x \in f^{-1}(A) \text{ ou } x \in f^{-1}(B)$
 $\iff x \in f^{-1}(A) \cup f^{-1}(B)$

D'où par arbitraire sur x, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Prouvons 2) c). Soient $A, B \subset F$ et $x \in E$.

$$x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B$$

 $\iff f(x) \in A \text{ et } f(x) \in B$
 $\iff x \in f^{-1}(A) \text{ et } x \in f^{-1}(B)$
 $\iff x \in f^{-1}(A) \cap f^{-1}(B)$

D'où par arbitraire sur x, $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

6 APPLICATION AUX SOMMES

DÉFINITION 24 (Union et intersection)

Soit $(A_i)_{i \in I}$ une famille de parties de E indexée par un ensemble I non vide (possiblement infini).

- 1) On définit <u>l'intersection des A_i </u> par $\bigcap_{i \in I} A_i := \{x \in E \mid \forall i \in I \mid x \in A_i\}$.
- 2) On définit la <u>réunion des A_i </u> par $\bigcup_{i \in I} A_i := \{x \in E \mid \exists i \in I \quad x \in A_i\}.$
- 3) On dit que les A_i sont $\underline{2}$ à $\underline{2}$ disjoints si $\forall (i,j) \in I^2$ $i \neq j \Longrightarrow A_i \cap A_j = \emptyset$.
- 4) On dit que les A_i sont <u>disjoints dans leur ensemble</u> si $\bigcap_{i \in I} A_i = \emptyset$.

EXEMPLE 12. $A = \{2,3\}, B = \{1,3\}, C = \{1,2\}$ sont disjoints dans leur ensemble, mais pas 2 à 2.

DÉFINITION 25 (Partition)

Avec les mêmes hypothèses que ci-dessus, on dit que la famille $(A_i)_{i \in I}$ est une partition de E si :

- $\forall i \in I \quad A_i \neq \emptyset$.
- $\bullet \bigcup_{i \in I} A_i = E.$
- Les A_i sont 2 à 2 disjoints.

EXEMPLE 13. Soient \mathscr{I} l'ensemble des entiers impairs et \mathscr{P} celui des entiers pairs. $(\mathscr{I},\mathscr{P})$ est une partition de \mathbb{Z} . Rappel : on a vu l'intérêt des partitions pour "découper" des sommes et produits.

PROPOSITION 26 (Changement d'indice généralisé)

Soit *I* et *J* deux ensembles **finis**. Soit $\varphi: I \to J$ bijective. On a alors, pour toute famille $(b_i)_{i \in J}$:

$$\sum_{j\in J} b_j = \sum_{i\in I} b_{\varphi(i)}.$$

La famille $(b_{\varphi(i)})_{i \in I}$ est une <u>réindexation</u> de la famille $(b_j)_{j \in J}$.

Démonstration. Admis pour le moment.

EXEMPLE 14. Avec la bijection $\varphi: i \in [m, n] \mapsto m + n - i \in [m, n]$, on retrouve la formule

$$\sum_{i=m}^{n} a_i = \sum_{j=m}^{n} a_{m+n-j}.$$

REMARQUE. On a une formule analogue avec le produit

III RELATION BINAIRES

DÉFINITION 27

Soit E un ensemble non vide. On appelle <u>relation binaire</u> sur E toute partie \mathbb{R} de $E \times E$. On note $x \mathcal{R} y$ pour $(x, y) \in \mathbb{R}$.

Si $x\Re y$, on dit que x est en relation avec y.

En pratique, pour définir \mathcal{R} , on écrit $x\mathcal{R}y \iff P(x,y)$ où P(x,y) est une proposition vraie si $(x,y) \in \mathcal{R}$, fausse sinon. On raisonne uniquement avec P, sans expliciter la partie $\mathcal{R} \subset E \times E$.

EXEMPLES 15. Dans \mathbb{R} , on définit $x \mathcal{R} y \iff x \le y$. Cela correspond à la partie $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \le y\}$. Dans l'ensemble des droites du plan $D\mathcal{R}D' \iff D \not\parallel D'$

1 RELATION D'ORDRE

DÉFINITION 28 (Relation d'ordre)

Une relation binaire $\mathcal R$ définie sur un ensemble E est une relation d'ordre si

- \Re est réflexive, càd $\forall x \in E \ x \Re x$
- \Re est antisymétrique, càd $\forall x, y \in E \quad x \Re y \text{ et } y \Re x \Longrightarrow x = y$
- \Re est transitive, càd $\forall x, y, z \in E \quad x \Re y \text{ et } y \Re z \Longrightarrow x \Re z$

On appelle ensemble ordonné un couple (E, \mathbb{R}) où \mathbb{R} est une relation d'ordre sur E.

DÉFINITION 29 (Ordre total et partiel)

Soit (E, \mathcal{R}) un ensemble ordonné. On dit que \mathcal{R} définit un ordre total sur E si

$$\forall x, y \in E \quad (x \mathcal{R} y \text{ ou } y \mathcal{R} x)$$

L'ordre est dit partiel s'il n'est pas total.

EXEMPLES 16. \leq est une relation d'ordre total sur \mathbb{N} , \mathbb{Z} , \mathbb{R} ... (mais pas \mathbb{C} !). Il en va de même pour \geq .

- < et > ne sont pas des relations d'ordre, car non réflexives.
- "divise" est une relation d'ordre partiel sur \mathbb{N} .
- \subset est en général une relation d'ordre partiel sur $\mathcal{P}(E)$, où E est un ensemble.

DÉFINITION 30 (Vocabulaire lié à l'ordre)

Soit (E, \leq) un ensemble ordonné, et A une partie de E.

- $m \in E$ est un minorant de A si $\forall x \in A$ $m \le x$
- $M \in E$ est un majorant de A si $\forall x \in A$ $x \leq M$
- A est majorée (resp. minorée) si elle possède au moins un majorant (resp. minorant).
- A est bornée si A est majorée et minorée.
- $m \in E$ est **le** plus petit élément de A si m est un minorant de A et $m \in A$.
- $M \in E$ est **le** plus grand élément de A si M est un majorant de A et $M \in A$.

PROPOSITION 31 (*Unicité*)

Le plus petit élément (resp. le plus grand) de A, s'il existe, est unique.

Démonstration. Immédiat par la propriété d'antisymétrie.

2 RELATION D'ÉQUIVALENCE

DÉFINITION 32 (Relation d'équivalence)

Une relation \mathcal{R} est une **relation d'équivalence** si

- \Re est réflexive, càd $\forall x \in E \ x \Re x$
- \Re est symétrique, càd $\forall x, y \in E \ x \Re y \Longrightarrow y \Re x$
- \Re est transitive, càd $\forall x, y, z \in E \quad x \Re y \text{ et } y \Re z \Longrightarrow x \Re z$

DÉFINITION 33 (Classe d'équivalence)

Soit E un ensemble muni d'une relation d'équivalence \Re . Pour tout $x \in E$, on définit la <u>classe</u> d'équivalence de x l'ensemble

$$[x] := \{ y \in E \mid x \mathcal{R} y \}$$

On la note parfois aussi \overline{x} . Un élément quelconque $y \in \overline{x}$ est dit un représentant de la classe.

EXEMPLES 17.

- Dans tout ensemble E, la relation d'égalité est une relation d'équivalence et [x] = x.
- Dans l'ensemble des droites du plan // est une relation d'équivalence.
- Dans \mathbb{Z} la congruence $x \mathcal{R} y \iff x \equiv y$ [5] est une relation d'équivalence et $\overline{2} = \{2 + 5k \mid k \in \mathbb{Z}\}$.

PROPOSITION 34 (Propriétés des classes d'équivalence)

Soit *E* un ensemble muni d'une relation d'équivalence \Re . Soient $x, y \in E$.

- 1) $x \in [x]$ et en particulier, $[x] \neq \emptyset$.
- 2) Si $x \mathcal{R} y$, alors [x] = [y].
- 3) Si $[x] \neq [y]$, alors $[x] \cap [y] = \emptyset$. Dit autrement, ou bien [x] = [y], ou bien [x] et [y] sont disjointes.
- 4) $E = \bigcup_{x \in E} [x]$
- 5) Les classes d'équivalence forment une partition de *E*.

Démonstration. Pour 1) : on a $x\Re x$ par réflexivité de \Re , d'où le résultat.

Pour 2) : soit $z \in [y]$. Alors on a $x\Re y$ et $y\Re z$ et donc par transitivité $x\Re z$, si bien que $z \in [x]$. Par arbitraire sur z, on a ainsi $[y] \subset [x]$. De même, on montre que $[x] \subset [y]$.

Pour 3) : supposons par l'absurde que $[x] \neq [y]$ et $[x] \cap [y] \neq \emptyset$. Alors il existe $z \in [x] \cap [y]$. Ainsi $x \mathcal{R} z$ et $z \mathcal{R} y$. Par transitivité, $x \mathcal{R} y$ si bien que par 2), on a [x] = [y]. Contradiction. D'où le résultat.

Pour 4) : comme $\{x\} \subset [x]$ par le 1), on obtient une première inclusion

$$E = \bigcup_{x \in E} \{x\} \subset \bigcup_{x \in E} [x]$$

et l'inclusion réciproque est évidente car $[x] \subset E$. D'où le résultat.

Pour 5): cela découle de la définition d'une partition, couplée à 1)-3)-4).

EXEMPLES 18. Dans \mathbb{Z} on considère $x \mathcal{R} y \iff x \equiv y$ [4].

Montrer que \Re est une relation d'équivalence et déterminer les classes d'équivalence.